Abstract
<div class="line" id="line-7"> Density functional theory (DFT) is used to obtain the first structural characterization of the unsaturated dichromium carbonyl Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> , which is predicted to have a remarkably short metal−metal bond length of 2.31 Å (B3LYP) or 2.28 Å (BP86). This chromium−chromium distance is essentially identical to that reported experimentally for the established Cr⋮Cr triple bond in (η <span style="font-size: 12.75px;"> 5 </span> -Me <span style="font-size: 12.75px;"> 5 </span> C <span style="font-size: 12.75px;"> 5 </span> ) <span style="font-size: 12.75px;"> 2 </span> Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 4 </span> . The dissociation energy to the fragments Cr(CO) <span style="font-size: 12.75px;"> 4 </span> and Cr(CO) <span style="font-size: 12.75px;"> 5 </span> is determined to be 32 kcal/mol (B3LYP) or 43 kcal/mol (BP86). For comparison, the Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 10 </span> molecule and the saturated Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 11 </span> system have negligible dissociation energies. The minimum energy Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> structure is of <i> C </i> <i style="font-size: 12.75px;"> s </i> symmetry with the two chromium atoms asymmetrically bonded to the bridging carbonyls. However, within 0.1 kcal/mol lies a <i> C </i> <span style="font-size: 12.75px;"> 2 </span> symmetry structure with one symmetric and two asymmetric bridging carbonyls. Furthermore, the high symmetry <i> D </i> <span style="font-size: 12.75px;"> 3 </span> <i style="font-size: 12.75px;"> h </i> structure analogous to Fe <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> lies only ∼1 kcal/mol higher in energy. The Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> molecule is thus highly fluxional. The extremely flat potential energy surface in the region adjacent to these minima suggests that Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> will be labile. The relationship between the Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> molecule and the experimentally known binuclear manganese (η <span style="font-size: 12.75px;"> 5 </span> -Me <span style="font-size: 12.75px;"> 5 </span> C <span style="font-size: 12.75px;"> 5 </span> ) <span style="font-size: 12.75px;"> 2 </span> Mn <span style="font-size: 12.75px;"> 2 </span> (μ-CO) <span style="font-size: 12.75px;"> 3 </span> compound is explored.</div>
Original language | American English |
---|---|
Journal | The Journal of Physical Chemistry A |
Volume | 107 |
DOIs | |
State | Published - Oct 2003 |
Keywords
- Group theory
- Chromium
- Chemical structure
- Carbonyls Transition metals
Disciplines
- Physical Sciences and Mathematics
- Chemistry