Chromium−Chromium Multiple Bonding in Cr2(CO)9

Se Li, Nancy A. Richardson, R Bruce King, Henry F Schaefer

Research output: Contribution to journalArticlepeer-review

Abstract

<div class="line" id="line-7"> Density functional theory (DFT) is used to obtain the first structural characterization of the unsaturated dichromium carbonyl Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> , which is predicted to have a remarkably short metal&minus;metal bond length of 2.31 &Aring; (B3LYP) or 2.28 &Aring; (BP86). This chromium&minus;chromium distance is essentially identical to that reported experimentally for the established Cr&vellip;Cr triple bond in (&eta; <span style="font-size: 12.75px;"> 5 </span> -Me <span style="font-size: 12.75px;"> 5 </span> C <span style="font-size: 12.75px;"> 5 </span> ) <span style="font-size: 12.75px;"> 2 </span> Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 4 </span> . The dissociation energy to the fragments Cr(CO) <span style="font-size: 12.75px;"> 4 </span> &nbsp;and Cr(CO) <span style="font-size: 12.75px;"> 5 </span> &nbsp;is determined to be 32 kcal/mol (B3LYP) or 43 kcal/mol (BP86). For comparison, the Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 10 </span> &nbsp;molecule and the saturated Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 11 </span> &nbsp;system have negligible dissociation energies. The minimum energy Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> &nbsp;structure is of&nbsp; <i> C </i> <i style="font-size: 12.75px;"> s </i> &nbsp;symmetry with the two chromium atoms asymmetrically bonded to the bridging carbonyls. However, within 0.1 kcal/mol lies a&nbsp; <i> C </i> <span style="font-size: 12.75px;"> 2 </span> &nbsp;symmetry structure with one symmetric and two asymmetric bridging carbonyls. Furthermore, the high symmetry&nbsp; <i> D </i> <span style="font-size: 12.75px;"> 3 </span> <i style="font-size: 12.75px;"> h </i> &nbsp;structure analogous to Fe <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> &nbsp;lies only &sim;1 kcal/mol higher in energy. The Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> &nbsp;molecule is thus highly fluxional. The extremely flat potential energy surface in the region adjacent to these minima suggests that Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> &nbsp;will be labile. The relationship between the Cr <span style="font-size: 12.75px;"> 2 </span> (CO) <span style="font-size: 12.75px;"> 9 </span> &nbsp;molecule and the experimentally known binuclear manganese (&eta; <span style="font-size: 12.75px;"> 5 </span> -Me <span style="font-size: 12.75px;"> 5 </span> C <span style="font-size: 12.75px;"> 5 </span> ) <span style="font-size: 12.75px;"> 2 </span> Mn <span style="font-size: 12.75px;"> 2 </span> (&mu;-CO) <span style="font-size: 12.75px;"> 3 </span> &nbsp;compound is explored.</div>
Original languageAmerican English
JournalThe Journal of Physical Chemistry A
Volume107
DOIs
StatePublished - Oct 2003

Keywords

  • Group theory
  • Chromium
  • Chemical structure
  • Carbonyls Transition metals

Disciplines

  • Physical Sciences and Mathematics
  • Chemistry

Cite this